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Abstract. This study applies a geospatial analytic approach to assess human, 
economic and physical constraints to cotton production potential in Mali, 
Burkina Faso and Benin. A Geographic Information System (GIS) is used to 
create a cost grid reflecting an integrated, geographic model of cotton 
production potential including a theoretically diverse set of parameters. 
Parameters include infrastructure, socio-political, demographic, agronomic, and 
novel geographic parameters among others. The GIS model uses geostatistics 
and cost grid functions to explore and expand upon existing datasets. The study 
results in a visual representation of cotton production potential. 
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1 Introduction and Problem Statement∗ 
 
This study applies a geospatial analytic approach to assess human, economic and 
physical constraints to cotton production potential in Mali, Burkina Faso and Benin. 
A Geographic Information System (GIS) is used to create a cost grid reflecting a 
theoretically diverse set of parameters including infrastructure, socio-political, 
demographic, agronomic, and geographic parameters among others. Although still in 
early stages, the goal of this model is to allow policy makers, investors, or academic 
researchers to evaluate hypothesized scenarios for the cotton sub-sector. 

                                                      
∗ All figures and tables are available at: <www.geog.mcgill.ca/grad/green/CPP>. 



  
 

Cotton plays an important role in the economies and societies of Sub-
Saharan Africa (SSA). It is estimated that up to 16 million people directly or 
indirectly benefit from the cotton production economy generated by between two and 
three million of the region’s small farmers [13]. In fact, the combined region of West 
and Central Africa is set to become the world’s second largest exporting region of 
cotton after the United States. Cotton production in West Africa has rapidly increased 
over recent decades, rising from some 150,000 tons of cotton lint in the 1970s to over 
one million tons in 2003-2004 [13]. Despite this increase, variability in parameters 
influencing cotton production creates a spatially heterogeneous landscape for cotton 
production in SSA [8, 10]. The purpose of this paper is to apply a transparent, 
integrative, and parsimonious model to geographically understand what factors limit 
cotton production potential in the region. The three countries targeted in this study - 
Mali, Burkina Faso, and Benin -were chosen because of their economies’ high 
dependency on cotton and because they are among the largest cotton producers in 
SSA [4]. Moreover, given the significance of cotton for the livelihood of millions 
people in the region, the potential benefits of a successful cotton industry could have 
a wide-spread impact on society as a whole. 

Cotton production potential (CPP) in West and Central African countries is a 
dynamic system conditional, like many human-environment systems, on complex 
trends (ecologic, demographic, political, economic, etc.) that interact on multiple 
scales (global, regional, national, provincial, household, and individual) [2]. There are 
many approaches to measuring commodity production potential that use political, 
agronomic, or other limited sets of variables [5, 13, 21]. However, these approaches 
are often not integrated or comprehensive in scope, focusing only on one theoretically 
isolated set of variables as opposed to examining how parameters interact in 
combination with each other. Moreover, these approaches do not usually provide 
models with explicit manipulable parameters allowing comparative regional studies.  

One possible way of combining, visualizing, and evaluating these parameters 
is by operationalization in a GIS. The advantage of using GIS stems from the fact that 
they require specific parameters, provide manipulable conditions, and are 
geographically referenced. By requiring that information be spatially explicit, a GIS 
can identify areas of potential growth or pattern anomaly which can then be 
investigated to understand how policy may play a role in promoting development.  

With cotton being an input-intensive crop, its production inevitably raises 
questions as to its environmental impact and long-term sustainability. The central 
elements in expanding cotton yields over the last decades have generally been input-
related, focusing on enhancing irrigation as well as fertilizer and pesticide use. 
However, it is precisely this strategy that is also a source of environmental 
degradation [1], often leading to soil degradation and decline in soil fertility [3]. The 
following sustainability problems have been reported in relation to cotton cultivation 
[14]: degraded land as a result of salinization and erosion; water depletion by 
excessive use of soil and surface water; natural habitat conversion due to cutting of 
forests and dam constructions; eutrophication of surface water; wildlife contamination 
by pesticides (insects, fish, mammals, birds); human health due to direct pesticide 
intake primarily by farm workers but also by regional inhabitants through 
contamination of drinking water and food contamination. Furthermore, the 
monoculture characteristic of cotton often adds to the destructive effect on natural 



  
 

habitats as farmers expand their production areas to increase yields. Cotton fields 
often lack vegetative cover and organic matter to limit the impact of soil erosion [3, 
26]. All these factors have very serious implications for intensive and wide-spread 
cotton production for long-term sustainability. 

This model provides a tool to identify areas for future production and the 
constraints that limit those areas. The ongoing development of the CPP model 
recognizes that cotton growth areas in Africa are ever changing [13], but sees benefit 
in attempting to understand the complex systems of agency and structural constraints 
to sustainable production. 
 
 
2 Methods 
 
This section describes procedural steps in data selection, parameter scaling and 
weighing, and construction of a GIS reflecting geographic patterns of cotton 
production potential. The ultimate goal of these processes is to construct a cost grid 
[29] that reflects the most likely areas for cotton expansion in Mali, Burkina Faso, and 
Benin. In the CPP MODEL cost grid, low value cells are considered to be more likely 
to be available for cotton expansion and higher value cells are less likely to have 
cotton. The possible min-max range for pixel values in the cost grid is 0-485, though 
the true range of values (185.24-325.07) is much smaller. 
 
2.1 Parameter Selection 
 
Preliminary parameter selection was modified by data availability and reliability, 
which are problems for human-environment models in general [22] and for the cotton 
sub-sector of SSA in particular. The 33 parameters selected for this model are 
presented in Table 1. Reducing the parameters, specifically those based on coarse or 
unreliable data is seen as a next step for this model. The current parameters were 
divided into three heuristic categories: economic, human, and physical assets or 
capitals. The division of the parameters into these three groups is a heuristic device 
that does not necessarily reflect any version of capital theories [23-25]. The divisions 
are manipulable and do not ultimately change the model outcome because every 
parameter is independently scaled and weighed.  
 
2.2 Parameter Processing: Scaling and Weighing 
 
Parameter data must be scaled and given a specific weight relative to all other 
parameters. Scaling of the data reflects levels of heterogeneity, statistical patterns, and 
social categories in data. Weighing the data gives each scale a relative value which 
defines relationships between parameters. The scaling and weighing of parameters 
were undertaken in static equilibrium. Complex system interactions [12] and 
emergent properties were not given dynamic, longitudinal equations. Although, 
modeling of the complex, dynamic relationships that exist between parameters is 
ultimately necessary for scenario development. Modeling these relationships is also 
viewed as a next step for the CPP model.  
 



  
 

National Scale 
Data came in scales at and below the national scale. Different methods were applied 
to datasets due to the way that GIS recognize raster and vector data at different scales 
and due to data quality (preclassified or raw). Most of the parameters (23/33) lacked 
disaggregated data below the national scale. These parameters are presented in Table 
2. Since these were all processed in a similar fashion, the scaling and weighing of one 
of these parameters (Arable Land) is presented here in detail as an example of the 
basic procedures.  
 
Arable Land  
This parameter is judged to be an indicator of land that is most likely for the extension 
of commercial crops and by inference cotton expansion in SSA where the large 
majority of cotton is grown on 1-2 ha. plots by small farmers. Reliability of the data 
suffers in the data acquisition stage. Data was reported individually by different 
countries that may have different data standards or definitions. The average hectares 
for the years 1997-2002 was classified against all SSA countries on a relative scale of 
0-4 using Jenks’ Natural Breaks formula [17-18]. A weight of “*2” was applied to the 
scale making a maximum score of eight for the parameter. The lower the value, the 
better performing a parameter. The final scores (Table 3) were converted into raster 
grids representing the three countries. 
 
Subnational Scale 
Ten of CPP model’s 33 variables represented phenomena at the subnational scale. 
Various methods were needed to operationalize, scale, and weigh this data. Two of 
the parameters (Distance to Ginneries and Distance to Cities) were originally vector 
files that were converted to raster and then processed using the Straight-line Distance 
function in Spatial Analyst (ArcGIS). The results of this process were raster grids that 
expressed distance to center points (cities and ginneries) in kilometers. Classification 
of these grids supposed that distances of 70 km intervals served as effective class 
levels for farmers trying to reach markets and transport to ginneries.  

The reclassification of the grids for many parameters took place on data that 
had already been classified. For example, Problem Soils, Terrestrial Ecoregions, 
Historic Cotton Areas, and Road Conditions parameters came as preclassified 
datasets that had to be reclassified in relation to the growth and transport of cotton. 
These processes are detailed in Table 4. Unfortunately, estimates of Producer and 
User Accuracy were not available for all the preclassified data received. Technical 
sheets from the FAO Land and Water Development division1 determined parameters 
of cotton growth and scales. Some of the subnational parameters (Precipitation and 
Population Density) were subjected to Jenks or manual data reclassifications, but 
unlike the national level data, this was done in relation to the data values in the grid 
itself and not to other SSA countries or administrative districts. All grids were clipped 
to represent Mali, Burkina Faso, and Benin.  
 
 
 

                                                      
1 <http://www.fao.org/ag/agl/default.stm> 



  
 

2.3 Stepwise Procedures: Cost Grid and Statistical Validation 
 
Once all data was in raster format it was subjected to the basic, cell-based analysis 
and geoprocessing procedures following [28] to form a cost grid.2 The resulting 
datasets express the value of all land in the region for cotton production potential at a 
1 km resolution (pixel). 

As mentioned above, validation of the model is limited by data constraints. 
Ground truth data acquisition will take place in the next stage of the model. Despite 
this, there is a need to compare our data results against some common standards. We 
cross-validate the model against datasets representing historic provincial cotton 
production data for 2002 from the Sahel West African Club (SWAC) [13] and an 
agroecological model developed by the FAO and IIASA [5].3 We compare these 
datasets at the lowest administrative level, though in full realization that the scale of 
SWAC data biases results and limits inferences below the provincial level.  

In order to compare the models some data standardization was necessary. 
Data values for all three models were summarized at the lowest administrative level 
in Mali, Benin, and Burkina Faso. Data thus summarized was then reclassified 
according to a ranking system of eight hierarchical steps based on IIASA data. Table 
5 shows that SWAC and CPP administrative units are classified by range (for SWAC 
production in metric tons and for CPP  mean values) whereas the IIASA values were 
reclassified based on median values due to the more conservative estimate of Very 
High values that median provided over mean for IIASA. 

The IIASA pixel resolution of 9 km was based on a multitude of ecological 
parameters that they detail in their methodology.4 We collapsed the original 0-NoData 
and 9-Water values with Not Suitable to form the category Very Marginal. The 
SWAC data was problematic in that we were not able to get data at the lowest 
administrative levels by the time this paper was being written, therefore provincial 
level production data was disaggregated to lower administrative levels. The raw 
SWAC provincial scale production numbers were grouped into an eight step 
hierarchy similar to the IIASA model. After rank ordering the historic production 
capability per province, we assumed that all lower administrative levels would 
maintain an equal ranking relative to each other. Finally, since it was difficult to 
assign a contextualized understanding of the data produced in our model, we used 
Jenks to classify our model into eight divisions like SWAC and IIASA schemes. 
Figure 1 shows the general distribution of the administrative units by rank for each 
model. The reclassification results (Table 6) indicate that the classification structure 
was sufficient in producing similar kurtosis and standard errors in the model datasets. 

Exploratory statistical analyses were performed on the data sets at regional and 
national scales to observe how the models correlated regionally and when national 
units were considered. Administrative units were subjected to ANOVA tests at both 
the regional and national scales. Correlation matrices allowed observation of 
directionality between the models. Overall accuracy was calculated by smallest 
administrative unit for the entire region. Kappa Index of Agreement (KIA) was 

                                                      
2 Specific procedural steps are available at: <www.geog.mcgill.ca/grad/green/CPP>. 
3 We refer to the FAO/IIASA model as just IIASA for the remainder of the article 
4 <http://www.fao.org/AG/agl/agll/gaez/index.htm> 



  
 

performed on raster versions of the smallest administration units.  All subsequent 
maps were produced in ESRI ArcGIS 9.1. Results are presented as both statistics and 
maps to help visualize data relationships. 
 
 
3 Results 
 
Parameter values at the national scale are reported in Table 7. Visual comparison of 
the economic, human, and physical maps (Figures 2-4) reveals spatial heterogeneity 
at the pixel level and how coarse national scale parameters can heavily influence cost 
grid scores. The outlines of the Economic Assets map (Figure 2) reflect parameters at 
the national scale; whereas the Physical and Human Assets maps (Figures 3 & 4) 
better represent the results of incorporating localized data. Differences in the capital 
assets maps scores reflect how much weight was given to parameters for the cost grid 
calculation. The physical infrastructure dimension was nearly equivalent to the 
combined values of economic and human dimensions. Table 8 summarizes the 
physical, economic, and human descriptive statistics over the entire region. These 
three grids combine to form the overall cost grid in Figure 5. The final cost grid 
shows cotton production potential to be highest in sections of western Mali, near 
Mopti in Mali, close to bodies of water, in a belt through the mid and southern 
reaches of Burkina Faso, and in the northern areas of Benin.   

The SWAC and IIASA models were introduced in order to compare and 
validate the results of the CPP model. Neither SWAC nor IIASA represent true cotton 
production potential; they are useful comparative models for drawing inferences 
about the accuracy and relevancy of the CPP map. Maps of the administrative level 
groupings are shown in Figures 6-8. Descriptive statistics for the administrative 
divisions of model data at the regional level are presented in Table 9.  

Pixels classified according to the eight step hierarchy were examined 
through the use of a Kappa Index of Agreement test (KIA) (see Table 10) [19]. The 
results indicate poor agreement of the CPP model with the IIASA and SWAC models 
at the pixel level. IIASA and CPP show better agreement than the SWAC and CPP. 
Overall accuracy assessments of the models’ pixels were high (49%) between CPP 
and the SWAC and IIASA models. However, due to the numerical bias of using 
pixels from the agreeably unsuitable land in northern Mali, we prefer to use the 
administrative levels as a better measure for overall accuracy. Aggregating pixel 
values to local administrative levels, the models were statistically compared. Out of 
the 650 administrative units, 106 were similarly classified by CPP and IIASA, 41 
were similarly classified by CPP and SWAC, and 34 were classified as the same 
value by all three models (see Table 11). It must be recalled that we are evaluating 
CPP against non-ground truth models. Given that the models do not represent reality, 
we chose to represent the data from CPP and focus on Producer’s Accuracy here.  
Figure 9 shows the agreement between administrative units at each rank of the 
classification hierarchy. The figure closely resembles Producer’s Accuracy. The 
highest amount of agreement occurs in Unsuitable land.  

ANOVA F-value (83.52) on the models (Table 12) shows that there is a 
significant difference between the model means. The correlation matrix (Table 13) 
illustrates that CPP model mildly agrees with the IIASA model (r= 0.52, r2= 0.27). 



  
 

Whereas there is no explanatory value between SWAC and CPP (r= -0.10, r2= 0.01). 
The SWAC and IIASA model also had a low correlation (r= 0.27, r2= 0.07). None of 
the models showed a high level of agreement in either their raw data (Kappa) or at the 
lowest administrative levels (ANOVA and Correlation Matrix), SWAC diverging 
more than the other two models. 

Statistics comparing model performance at the national levels were 
undertaken to inspect how models differed in the relative understanding of national 
capacities. Descriptive statistics for models in each country are presented in Table 14. 
ANOVA tests performed on models for every country (see Table 15) found that there 
was no significant difference in the way that models judged Benin, though Mali and 
particularly Burkina Faso showed high levels of disagreement of cotton production 
potential. Correlation matrices inspect the correlation of trends in administrative 
values between each model. CPP found that the best country was Burkina Faso while 
Mali and Benin ranked equally. IIASA also found that Burkina Faso outranked Benin 
and Mali (see Table 14). In contrast, SWAC found that Mali’s potential for cotton 
growth was much higher than Benin and that Burkina Faso was a marginal area. 
While a relative ranking of the countries is interesting, more detailed analysis of 
model performance in each country will allow us to see how the models performed 
differently.    
 
Mali 
There was significant performance difference between models in Mali (ANOVA: p < 
0.001) (Table 15). There is much disagreement in western Mali where IIASA rates 
the region poorly, CPP rates it as marginal, and SWAC shows significant levels of 
production. SWAC with a mean score of 2.7 rates Mali generally higher than IIASA 
(4.5) and CPP (4.5) mean scores. Correlations were all strong and significant.  Model 
correlations were strongest for CPP and IIASA (r=0.66, r2=0.44) (Table 16). When 
inspecting spatial heterogeneity by administrative level, one can see that the large 
amount of unusable land in the north, the usable land near Mopti and near water 
bodies, and the usable land in the southern parts of Mali correlate well in all models.  
 
Benin 
ANOVA tests found no significant difference between the models in Benin. Thus the 
models judged the country at about the same value. However, visual inspection of the 
models shows that there is much disagreement in the southern provinces and in the 
relative scaling of the districts. In fact, the correlation matrices indicate that there was 
a weak, non-significant correlation between SWAC and CPP. IIASA and CPP show a 
medium correlation based on their relative ranking of administrative levels and the 
higher spatial diversity they show than the SWAC model. 
 
Burkina Faso 
Burkina Faso revealed the highest significant differences in the model (ANOVA: 
p<0.001) due to the divergent predictions made by SWAC. CPP and IIASA generally 
agreed on Burkina Faso as the best country (mean values: CPP 1.72, IIASA 2.78) at 
the national level while SWAC found it to be the worst producing country (mean 
value: SWAC 6.06). Administrative levels showed interesting correlation patterns: 
CPP and SWAC showing a medium negative correlation, SWAC and IIASA showing 



  
 

a medium positive correlation, and CPP and IIASA showing only a weak positive 
correlation. CPP generally agrees with IIASA in the western and eastern areas of the 
country. SWAC and CPP predict opposing trends through the middle, north, and 
eastern regions of the country. 
 
 
4 Discussion 
 
Constraints to data and to how parameters are constructed limit inferences. Selection 
of model parameters is constrained by availability and reliability of data [17, 22]. 
Human factors and physical factors limit acquisition and operationalization of reliable 
data for models of human-environment interfaces [22]. A discussion of general 
limitations to data acquisition for human-environment interface models can be found 
in Rindfuss et al (2003), Lambin et al (2003), and Meyer & Turner (1994) [17-18, 
22]. There is a paucity of data in SSA due to human and physical constraints to data 
acquisition. Particular constraints to data reliability and acquisition for the cotton sub-
sector in SSA are numerous. The main practical hurdle we faced was that data on 
local and provincial institutions or the localized actions of national institutions 
involved in the cotton sub-sector were not available. Problems of data reliability and 
operationalization related to each selected parameter of this model are summarized in 
the tables presenting national and subnational scale parameters in Tables 2 & 4. There 
is much room for improvement in the CPP model. Lack of rigorous data ultimately 
led us to generate new datasets, attempt to rescale data, or to omit and modify the 
selection of parameters used in the model.  

Some problems with data reliability can be overcome by ground-truthing a 
model or comparing a model to other datasets. However, reliable and appropriate data 
must be available or acquired for validation [16, 22]. Similar constraints to raw data 
acquisition in SSA limit validation methods and possibilities to draw conclusions 
from comparison with other datasets [17, 22]. Other problems that were common to 
both human and ecological parameters included data anachronism. In dynamic 
systems, remote sensing and other methods may reflect onetime events rather than 
trends. Also, while certain practices of land management or institutional settings may 
be in place, there is often a time lag before clear causal results of these practices or 
relations can be empirically measured. Even when results are measured and accrued 
to specific management practices or institutional settings there are problems of 
equifinality and multifinality [7]. When possible, efforts were made to incorporate the 
amplitude of change, slope of change, consideration of possible time lag, 
consideration of equifinality and multifinality, and other longitudinal data 
characteristics into the model. The limits of reliable data pose a great hurdle to our 
understanding of aspects of human-environment interface and to our ability to create 
appropriate policy to adapt to these conditions.  
 
CPP Model and Comparisons 
The CPP model tells us that large swaths of northern Mali are unsuitable for cotton 
production. Other models agree on this point. However, there are many areas of 
disagreement. The CPP model projects large areas in Burkina Faso and the country 
itself as the best places for cotton production.  



  
 

The most significant difference between the models was in the case of 
Burkina Faso, which scored particularly well in terms of its economic and physical 
parameters. Producer price related variables, indicating a stable institutional setting, 
were better for Burkina Faso than for either Mali or Benin (see Table 7). Burkina 
Faso’s Textile Fibres Company (SOFITEX) is the largest operator in the country’s 
cotton sector and although it holds a monopolistic position for the sale of production 
inputs, producers are very much involved in the management of the company [10, 
27]. The strong involvement of producers in the management of the sector may 
explain Burkina Faso’s economic parameter performance. High producer 
participation would in this case translate into the ability of institutions to lower costs 
and maintain consistent producer costs and would also indicate the efficiency and 
adaptability (reforms) of the institutional setting. 

While the CPP and IIASA models generally agreed Burkina Faso had the 
best cotton production potential at national level, SWAC found it to be the worst. This 
discrepancy could have several explanations. First, the models themselves have 
fundamental differences in measurements. SWAC is based on historic production data 
while the CPP and IIASA models measure multiple parameters affecting production. 
Models that focus on the interplay of a variety of factors may be better for measuring 
potential. Second, cotton plantation areas shift regularly in West Africa in response to 
climatic factors (availability of water and fertility of soils) [13]. The SWAC model at 
a given point in time and does not take into account longitudinal trends. While all 
three countries’ overall production dipped in 2002, production levels increased again 
in the period between 2003 and 2005 (see Figure 10). The IIASA and CPP models 
paint a less stark picture than SWAC because they look at multiple, long term 
parameters. Moreover, there are other than agroecological factors at play that explain 
increased production in 2003 and 2005. This is where the more multifaceted CPP 
model provides a more nuanced insight than IIASA, accounting for economic and 
human factors in addition to agroecological trends. Third, CPP’s physical parameters 
play a large role in why Burkina Faso did so well compared to other regions. Perhaps 
most influential of all the physical parameters are cattle distribution and the lack of an 
independent parameter reflecting landscape slope. The CPP model includes a variable 
accounting for problem soils (which indicates sloped lands as a problem), but the CPP 
model maps do not account for the poor growing regions around the Mossi Plateau in 
central Burkina Faso. These regions are included in the IIASA maps, and significantly 
downgrade the areas for cotton production. Lastly, the way in which the models’ raw 
data is classified (in the eight step hierarchy) may be the ultimate source of 
disagreement. Without a way to calibrate the CPP pixel values to actual points on the 
land, the classification hierarchy is ultimately flawed. 

In the CPP model, Burkina Faso did well due to the density of quality roads, 
better cattle distribution, and high amount of potential irrigation land. These factors 
raised the quality of Burkina Faso while at the same time downgrading places like 
western Mali where SWAC showed higher production levels than either of the other 
models. Figure 11 shows how the relationships of these three physical parameters are 
manifested in the final CPP administrative map. The disagreement in western Mali 
and some divergent results in southern Mali appear to be caused by the same 
phenomena. The CPP model also classifies more land near Mopti and in the dryer 
regions as potentially suitable for cotton. Again these differences are most likely due 



  
 

to the emphasis put on potential irrigation areas in the north. Despite the 
disagreements, the models found significant agreement in the unsuitable lands of 
northern Mali and in the Niger River areas. 

Remarkable about the case of Benin is that the country scored quite badly in 
economic parameters and, conversely, quite well for human parameter scores. This 
result gives reason to examine not only how parameters were heuristically organized 
and operationalized, but also why economic conditions in this country are not 
commensurate with human parameters. Perhaps one reason is that the economic 
parameters contain variables more specific to cotton production. In contrast to 
Burkina Faso, Benin scored particularly low in the producer price related variables, 
indicating an unstable institutional setting. Like other countries in the region, Benin 
has been going through a liberalization process of its cotton sector. But this process 
has been less than smooth following the beginning of privatization of certain activities 
of SONAPRA, the public entity in Benin’s cotton sector. While the vertically 
integrated SONAPRA entity had previously ensured the distribution of inputs, access 
to credit, and provision of public services, the structure which is evolving as a result 
of the reforms of the cotton sector is much more splintered. Unlike Burkina Faso, 
where producer groups are actively engaged in the management of the cotton sector, 
splits have emerged among the producers’ groups in Benin following the reforms. 
There has been a steady rise in non-compliance or delays in meeting obligations in 
payments, loan servicing and delivery of services, resulting in a dangerous erosion of 
confidence in the system [9]. In a production system that relies on a basic level of 
trust in the functioning of institutions, such an erosion of confidence can have 
detrimental effects on the overall cotton production potential [9]. While the CPP 
model indicates that Benin has sound physical and human capital, the unstable 
variables of its economic parameters caused by the institutional malfunction suggest 
that cotton production potential could be much higher. The results of Benin 
underscore the importance of an interdisciplinary approach to the analysis of cotton 
production.  
 
Sustainability and Policy  
The questions that these findings raise in regard to cotton policy are closely linked to 
sustainability.  Cotton production is intimately linked with questions of sustainable 
land use and human-environment systems in SSA. For example, much of the 
increased production of cotton in recent years in Africa comes from land expansion 
[11], often disregarding ecological considerations [1]. There are other options besides 
land expansion, but these all ultimately implicate sustainability as well: increased use 
of fertilizers and pesticides; GM cotton experimentation in Burkina Faso; and new 
seeds from China. However, it is sure that land expansion according to rainfall will 
remain the main vehicles of increased production for the regions’ small farmers in the 
near if not long term future.  

The CPP model has at least two functions in informing sustainable policy 
decisions. The first is to examine ongoing trends in production compared to potential 
trends in production in order to understand constraints to ecologically and socially 
sustainable production relations. In this case, administrative districts in south-central 
Burkina Faso and southern Mali that express high potential but low actual production 
could be investigated. Although the model cannot predict particulars on how 



  
 

sustainable policies will unfold in certain administrative districts, it can identify 
districts where production potential is limited by constraints. The second way in 
which the CPP model can be used to inform and shape sustainable policy is by using 
it to run scenarios. For example, one could project cotton production potential under 
varying conditions of precipitation (e.g. simulating drought). Perhaps most 
intriguingly, one could simulate the effect that a higher world price of cotton would 
have on production levels over the entire region or in particular areas [8]. At this 
point, scenario simulations are limited to leveraging one variable. However, 
establishing more dynamic relationships between the parameters would allow 
complex, georeferenced simulations of cotton growth.  If areas with high production 
potential are identified early, appropriate policy measures can be taken to ensure that 
the particular environmental situation in these areas is taken into consideration.  
 
 
5 Conclusions 
 
By applying the CPP model to Mali, Benin, and Burkina Faso we find spatially-
referenced trends that indicate where cotton can be grown and what might be 
constraining cotton production in the region. Although the model does offer 
interesting discussion points and potentially serves as a tool to support sustainable 
practices in cotton production in the region, it will require more work. One of the 
basic advantages of this model is that it is georeferenced. However, the model needs 
validation. Ground truth data acquisition in the region would accomplish the goal of 
validation as well as offering the model a way of using historical data from known 
points to build dynamic relationships between parameters. Postulated dynamic 
relationships (whether causal or correlation) are necessary for scenario modeling. As 
well, understanding the relationships between parameters is key to creating a 
parsimonious model that can eliminate collinearity. Ground truth points also offer 
more reliable and localized data, overcoming many problems with unreliable data, 
anachronism, and scale. Specifically, this need is manifest for economic parameters. 
Most economic parameters are available only at a national level.  

The policy relevance of this model is obvious, offering a transparent method 
of valuating policy for meeting sustainable goals, such as those of the Millennium 
Ecosystem Assessment [19], in the particular context of cotton production in the 
poorest continent in the world. Moreover, this model is an attempt to improve the 
understanding of the spatial components of cotton – which affects millions of 
livelihoods in the region – so as to provide a tool to make policy decisions effective 
and more relevant to people on the ground. We hope to advance this model to its next 
stages through ground truth acquisition and reconfiguration of parameters in order to 
offer a viable way to improve cotton production. 
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